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Abstract Purpose: Identifying novel therapeutic agents for the treatment of childhood cancers requires
preclinical models that recapitulate the molecular characteristics of their respective clinical
histotypes.
Experimental Design and Results:Here, we have applied Affymetrix HG-U133Plus2 profiling
to an expanded panel of models in the Pediatric Preclinical Testing Program. Profiling led to
exclusion of two tumor lines that were of mouse origin and five osteosarcoma lines that did not
cluster with human or xenograft osteosarcoma samples.We compared expression profiles of the
remaining 87models withprofiles from112 clinical samples representing the samehistologies and
show that model tumors cluster with the appropriate clinical histotype, once ‘‘immunosurveil-
lance’’genes (contributed by infiltrating immune cells in clinical samples) are eliminated from the
analysis. Analysis of copy number alterations using the Affymetrix 100K single nucleotide
polymorphism GeneChip showed that the models have similar copy number alterations to their
clinical counterparts. Several consistent copy number changes not reported previously were
found (e.g., gain at 22q11.21that was observed in 5 of 7 glioblastoma samples, loss at 16q22.3
that was observed in 5 of 9 Ewing’s sarcoma and 4 of12 rhabdomyosarcomamodels, and ampli-
fication of 21q22.3 that was observed in 5 of 7 osteosarcoma models).We then asked whether
changes in copy number were reflected by coordinate changes in gene expression.We identified
493 copy number ^ altered genes that are nonrandom and appear to identify histotype-specific
programs of genetic alterations.
Conclusions:These data indicate that the preclinical models accurately recapitulate expression
profiles and genetic alterations common to childhood cancer, supporting their value in drug
development.

Development of new cancer therapies for children presents
certain challenges unique to this population. The incidence of
pediatric cancer is relatively low in the United States (1), and
multimodality therapy comprising surgery, radiation therapy,
and intensive chemotherapy has resulted in overall 5-year
survival rates for children with cancer approaching 80% (1).
The combination of low incidence and increasingly effective
primary therapy results in relatively few children eligible for the
evaluation of experimental therapies, and those that are
available have generally been extensively treated and have
highly resistant disease.

As an approach to overcoming the limitations in childhood
cancer drug development noted above, several groups within
the pediatric cancer community have systematically tested
the validity of preclinical human tumor xenograft models to
identify novel agents that may have clinical activity in childhood
cancers (2–17). Based on these experiences, the National
Cancer Institute has implemented a new initiative, the Pediatric
Preclinical Testing Program (PPTP), comprising a consortium of
investigators to evaluate new agents in vitro and in vivo .

For childhood cancers, xenograft models have been quite
accurate in identifying clinically active agents and effective drug
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combinations particularly when differences in drug exposure
between tested animals and humans are taken into account
(18). However, the utility of human tumor xenografts in
accurately predicting clinical efficacy has been challenged.
Concerns raised about xenografts as models for human cancers
include (a) the models may not recapitulate the compound
genetics of human cancer, (b) the number of models studied
per histotype may not represent the heterogeneity likely
encountered clinically, and (c) the characteristics of human
cancers may change when they are heterografted into immu-
nodeficient hosts in part as a result of the tumor stromal
elements being of murine origin. To begin to address these
issues in the PPTP, we screened available cell lines and
xenografts using cDNA profiling and compared expression
profiles with a similar number of clinical biopsies from the
same histologies (19). The xenograft models and cell lines
quite accurately recapitulated the expression profiles of their
respective clinical histologies.

The goal of the present study was to characterize the PPTP
panel using whole genome analytic methods: gene expression
profiling and whole-genome copy number analyses. These
profiles were used to characterize the PPTP samples both within
the panel itself and within the context of profiles obtained from
primary tumors. Overall, molecular analyses indicate the PPTP
in vitro and in vivo panels represent robust models of their
corresponding primary tumor samples.

Materials andMethods

Cell line and xenograft samples. The characteristics of each cell line
(n = 24) and human tumor xenograft (n = 63) have been reported
previously (20). Tumor designation and histotype are given in
Supplementary Table S1.

Clinical samples. Wilms’ tumor and osteosarcoma samples were
obtained with institutional review board approval from St. Jude Tissue
Bank. Expression data for other tumor histotypes were either from
previously published reports (leukemia, ependymoma, and medullo-
blastoma; refs. 21–23) or from Timothy Triche (Children’s Hospital of
Los Angeles; Ewing’s sarcoma and rhabdomyosarcoma) or from Robert
Seeger (Children’s Hospital of Los Angeles; neuroblastoma). The
distribution of clinical samples and PPTP models according to histotype
is shown in Supplementary Table S2.

Gene expression analysis by microarray. Total RNA was prepared
from snap-frozen s.c. grown tumor xenografts and patient tumor
samples using the RNeasy kit (Qiagen). Gene expression analysis was
done in the Hartwell Center Core Laboratory using the Affymetrix
HG-U133Plus2 GeneChip (54,613 probe sets). RNA quality was
confirmed by UV spectrophotometry and by analysis on the Agilent
2100 Bioanalyzer. Processing of RNA samples was done according
to the Affymetrix gene expression protocol. Expression signals were
calculated using the MAS5 statistical algorithm within the Affymetrix
GCOS software (version 1.4). Signal values were scaled using the global
normalization method with the 2% trimmed mean set to 500.
Detection calls for each transcript (absent, marginal, or present) were
determined using the default variables within the GCOS software.

Analysis of expression data within the PPTP panel was done using
log2-transformed signal values where the minimum log2 signal was set
to zero. For analysis of data originating from different Affymetrix
GeneChip (HG-U133A and HG-U133Plus2 microarrays), signal values
from the common HG-U133A probe sets (22,215 total) were scaled
to a trimmed mean of 500 and then log2-transformed and truncated to
a minimum value of zero as described above. The transformed signals
were median scaled, and each probe set was individually fitted using a
linear model to adjust for chip type.

Principal components analysis and unsupervised hierarchical clus-
tering were done using GeneMaths XT software version 1.6 (Applied
Maths). For clustering, the similarity between expression profiles or
samples was calculated using the Pearson product-moment correlation
coefficient; linkage was calculated using the unweighted pair group
method with arithmetic mean.

Analysis of differential expression between tumors and xenografts
was done using data collected on the HG-U133Plus2 microarray. GCOS
signal values were log2-transformed as described above. Only probe
sets with at least one ‘‘present’’ call across the three histotypes
(rhabdomyosarcoma, Ewing’s sarcoma, and osteosarcoma) were tested.
Within each histotype, a t test was done to compare the mean
expression of each probe set between primary and xenograft samples.
To adjust for multiple-hypothesis testing, the false discovery rate
was estimated as described (24). To capture probe sets differentially
expressed across histotype, we set a threshold of z2-fold difference in
expression plus a false discovery rate < 0.0167 in each t test. This
threshold corresponded to t test P values of 0.00465, 0.00333, and
0.00352 in the rhabdomyosarcoma, Ewing’s sarcoma, and osteosarco-
ma histotypes, respectively.

Single nucleotide polymorphism analysis by microarray. DNA was
extracted from xenograft and tumor samples using DNeasy Tissue kit
(Qiagen). Single nucleotide polymorphism (SNP) analysis was done in
the Hartwell Center Core Laboratory using the Affymetrix GeneChip
Human Mapping 100K assay (116,204 total probe sets). Purity and
integrity of DNA samples was confirmed by UV spectrophotometry and
by agarose gel electrophoresis. Processing of DNA samples was done
according to the Affymetrix 100K SNP protocol.15 Genotype calls were
generated using the dynamic mapping algorithm of the Affymetrix
GTYPE software (version 4.0). High-quality SNP array data were
obtained for 86 of the 87 PPTP samples (SNP genotype call rates,
z95%). Despite repeated attempts, PPTP sample acute lymphoblastic
leukemia-2 did not perform well (SNP genotype call rates, f40%) and
was excluded from subsequent SNP array analyses.

DNA copy number analyses were done in dChipSNP (25) using the
dChipSNP normalization and model-based expression algorithms.
Affymetrix CEL files containing probe intensity data were imported
into dChip and each array was normalized to a baseline array with
median signal intensity using the ‘‘invariant set’’ model (26). Model-
based expression was done using the perfect-match/mismatch model
to summarize signal intensities for each probe set. For copy number
inference, raw (uninferred) copy number was calculated by comparing
the signal intensity of each SNP probe set for each tumor sample against
a diploid reference set comprising 126 samples (41 Affymetrix public
samples, 49 St. Jude Children’s Research Hospital acute myelogenous
leukemia remission samples, and 36 St. Jude Children’s Research
Hospital acute lymphoblastic leukemia remission samples). The
Hidden Markov Model in dChipSNP was used to infer copy number
and to identify genomic amplifications and deletions. Genomic
amplifications and deletions were defined by regions containing SNP
with inferred copy number of z3.0 or V1.0, respectively. Copy number
summary plots according to xenograft histotype were generated by
dChipSNP after Hidden Markov Model analysis.

Correlation analysis of gene expression and genomic copy number

variation in the PPTP panel. The genomic locations of the HG-
U133Plus2 probe sets and the 100K SNP probe sets were obtained from
Affymetrix annotations. To identify SNP proximal to an expression
probe set, we applied a 50-kb window on either side of the expression
probe set. If a SNP was within 50 kb upstream or 50 kb downstream
from an expression probe set, that SNP was matched to the expression
probe set in subsequent analyses. For expression probe sets interrogat-
ing RefSeq transcripts, we applied a special rule. We replaced the
original probe set coordinates with those from the RefSeq transcript.
The goal was to capture SNP within 50 kb 5¶ or 3¶ to the RefSeq

15 http://www.affymetrix.com/support/downloads/manuals/100kmanual.pdf
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transcript. After applying these rules to identify ‘‘proximal’’ SNP, we
examined the association between genomic copy number and gene
expression by linear regression. We fitted a linear regression model of
SNP (log2 ratio) against expression (log2 signal) to estimate the fraction
(R2) of all variations measured in expression among the 86 tumors
attributable to underlying DNA copy number alteration. Expression
probe sets on the X and Y chromosomes were excluded from the
analysis as well as those called ‘‘absent’’ across all PPTP samples or
without proximal SNP. Overall, 38,716 of the HG-U133Plus2 probe
sets and 77,862 SNP were included in the analysis. Because the majority
of expression probe sets had multiple proximal SNP, the SNP with the
highest correlation (R2) value was selected for subsequent analyses.

Results

Characterization within the PPTP panel by gene expression
profiling. Previously, we reported the similarity between

expression profiles of childhood cancer models (cell lines
and xenografts) and their respective clinical counterparts for
selected histoptypes as determined by cDNA profiling (19).
However, differences in expression profiles are apparent when
different platforms are used. As most published reports have
used Affymetrix technology, we were interested in determining
whether the correlation between expression in models and
biopsy samples of childhood cancers was maintained using
this technology in which an increased number of genes was
probed. We examined both tumor models studied in the cDNA
profiling project and additional models that were made
available. This analysis showed Rh1 (rhabdomyosarcoma)
and SK-NEP (anaplastic Wilms’ tumor) to cluster with Ewing’s
sarcoma models (27). Two brain tumor xenografts in the
original cDNA profiling report were determined to be non-
human (BT-31 and BT-32, presumably mouse tumors), and the

Fig. 1. Expression profile analyses within the PPTP. A, pair-wise comparisons of expression profiles (all probe sets) using Pearson’s correlation (R) test. B, analysis of
expression variance using all probe sets by principal components analysis. Each sample is represented by a sphere plotted in three-dimensional space and colored by tumor
histotype. C, hierarchical cluster analysis of PPTP samples using 2,808 expression profiles with robust variable expression (median absolute deviation >1.6 with at least one
‘‘present’’call). X axis, samples;Yaxis, gene expression profiles; colored circles, histiotypes. Heat map colors show overexpressed transcripts (red) and underexpressed
transcripts (green).The scale bar indicates relative expression as SD from the mean.D, analysis of expression variance using 2,808 profiles by principal components analysis.
Each sample is represented by a sphere plotted in three-dimensional space and colored by tumor histotype.
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profiles from five osteosarcoma cell lines (OS160, OS164,
OS166, and OS187) were distinct from either clinical osteo-
sarcoma or other osteosarcoma models in the PPTP panel.
These tumors and cell lines were excluded from further
experimentation.

We used gene expression profiles generated from the
Affymetrix HU-U133Plus2 arrays to identify potential mole-
cular subtypes within the remaining 87 PPTP samples of
xenografts and cell lines (Supplementary Table S3; ref. 28).
Pair-wise comparison using all 54,613 transcript measurements
showed strongest correlation among samples from the same
histotype group. The highest correlations of expression were
observed within the Ewing’s sarcoma, leukemia, neuroblastoma,
osteosarcoma, rhabdomyosarcoma, and Wilms’ tumor histo-
type groups (Fig. 1A). Principal components analysis indicated

the major source of variance in gene expression was associated
with sample histotype. The greatest difference in profiles was
between lymphoid and nonlymphoid histotypes (Fig. 1B). To
further explore relationships among the PPTP samples, we
selected a subset of transcripts with robust expression variation.
Hierarchical clustering using the 2,808 highly variable tran-
scripts confirmed the major separation between leukemic and
nonleukemic histotypes (Fig. 1C). Further, these profiles
separated the PPTP panel into discrete clusters whose members
were almost exclusively based on xenograft and cell line
histotype. With three exceptions, all PPTP models clustered
according to histotype. The exceptions were in the rhabdo-
myosarcoma panel [Rh18 (xenograft), IV-Rh18 (in vitro), and
IV-RD (in vitro)] and the neuroblastoma panel [IV-CHLA-90
(in vitro)]. Principal components analysis using the 2,808

Fig. 2. Expression profile analyses of PPTP and primary tumor samples. A, ANOVA (all probe sets) by principal components analysis. Each sample (87 models and111
primary tumors) is represented by a sphere plotted in three-dimensional space and colored by tumor histotype.B, pair-wise comparisons of expressionprofiles (all probe sets)
using Pearson’s (R) correlation test. C, hierarchical cluster analysis of PPTP and primary tumor samples using1,695 expression profiles with robust variable expression
(median absolute deviation >1.3 with at least one ‘‘present’’call). X axis, samples;Yaxis, gene expression profiles; colored circles, histiotypes. Xenografts are further colored
with dark shadows. Heat map colors showoverexpressed transcripts (red) and underexpressed transcripts (green).The scale bar indicates relative expression of transcripts
using a log2-transformed scale. D, hierarchical cluster analysis of PPTP and primary tumor samples using1,506 expression profiles excluding135 genes associated with
immunosurveillance. X axis, samples;Yaxis, gene expression profiles; colored circles, histiotypes. Xenografts are further colored with dark shadows. Heat map colors show
overexpressed transcripts (red) and underexpressed transcripts (green).The scale bar indicates relative expression of transcripts using a log2-transformed scale.
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highly variable transcripts confirmed the separate populations
within the PPTP samples. In particular, lymphoid, Ewing’s
sarcoma, neuroblastoma, and osteosarcoma subtypes were
the most distinct (Fig. 1D). Gene Ontology analysis of the
highly variable transcripts (Supplementary Table S2) showed
significant enrichment of genes involved in tissue specifica-
tion, especially those involved in neurogenesis and muscle
development.
Characterization of the PPTP panel by comparison with the

expression profiles of primary tumors. We extended the expres-
sion analyses to include gene profiles measured in 111 primary
tumors and the PPTP models (Supplementary Table S3).
Because some expression measures originated from different
Affymetrix GeneChip, we adjusted the combined tumor and
xenograft data set according to chip type (see Methods).

The major source of variance in expression was related to
tumor histotype. In particular, the lymphoid and osteosar-
coma histotypes were the most distinct (Fig. 2A). Pair-wise
comparisons of expression profiles indicated greatest similarity
within samples from the same histotype (Fig. 2B). The best
agreement between xenograft and tumor samples was found in
the lymphoid, neuroblastoma, and ependymoma histotypes
(Fig. 2B).

Hierarchical clustering was done using a subset of 1,695
transcripts with robust variable expression (Fig. 2C). As
observed in the cluster analysis within the PPTP samples, the
most significant separation was due to lymphoid versus
nonlymphoid histotype. Although there was generally cluster-
ing of preclinical models with their clinical counterparts, this
was not the case for the rhabdomyosarcoma models. If only
profiles from solid tumors were used, all models segregated
accurately with the appropriate clinical histotype (with the
three exceptions mentioned previously; data not shown). After
removal of 135 immunosurveillance profiles from those
depicted in Fig. 2C, all PPTP samples clustered with the
appropriate clinical histotype (Fig. 2D), including the rhabdo-
myosarcoma models with the exception of Rh18 and IV-RD.
These findings suggested the main distinction between rhab-
domyosarcoma tumors and preclinical models was related
to expression of immune-related genes. Overall, however, the
profiles of the xenograft models most closely resemble their
respective primary tumors and recapitulate expression of genes
that discriminate between tumor histotypes. In support of
this notion, Gene Ontology analysis of the highly variable
transcripts showed significant enrichment of genes associated
with cell differentiation, cell motility, and cell proliferation.
Developmental-associated transcripts included those of the
nervous system, muscle, skeleton, immune system, and organ
morphogenesis.

In the combined analysis of the clinical specimens and the
PPTP models, the rhabdomyosarcoma and rhabdoid tumor
samples segregated into two groups. This separation is not
based on alveolar versus embryonal subtype or site for
rhabdoid tumors (central nervous system or kidney). The
clinical NB samples also appeared to cluster in two separate
groups, with the preclinical models segregating predominantly
with one of these. The 12 neuroblastoma models profiled
(xenografts and cell lines) are predominantly MYCN amplified
(28), with the exceptions being CHLA-90, SK-N-AS, NB-EBc1,
and CHLA-79. Hence, the groups do not segregate according to
MYCN amplification status. However, the MYCN status of the

clinical samples used in this analysis, or whether samples were
from treated or untreated patients, is unknown.
Differential expression between primary tumors and PPTP

models. Although the PPTP models and primary tumors
clustered predominantly by histotype, the xenograft samples
tended to cluster within each histotype group (Fig. 2D). These
observations prompted us to test for differences in expression
between primary tumors and xenografts within the rhabdo-
myosarcoma, Ewing’s sarcoma, and osteosarcoma histotypes,
all of which have been analyzed on the HG-U133Plus2 array.
For each histotype, we did a t test and identified probe sets with
an estimated false discovery rate of <1.67% in each of the three
comparisons. Overall, we identified 1,198 probe sets meeting
this threshold and with >2-fold difference between primary
and xenograft samples. By Gene Ontology analysis, the most
significant biological functions enriched within the differen-
tially expressed transcripts were those of immune response,
cell cycle, RNA metabolism, and vesicle-mediated transport
(Supplementary Table S4). Some examples of macrophage,
B-cell, and vascular endothelial genes expressed 2.6- to 73.6-
fold higher in primary tumor samples compared with PPTP
models are shown in Table 1. This finding supports the
observation that exclusion of immunosurveillance genes (based
on gene annotations from Ingenuity Pathways) reduces the
separation of rhabdomyosarcoma primary tumor samples from
the PPTP models (Fig. 2D).
Analysis of genomic copy number change in the PPTP

panel. DNA samples from 86 of the 87 PPTP panel were
successfully analyzed using the Affymetrix 100K SNP assay. To
identify regions of potential DNA gain or loss, the hybridiza-
tion intensity of each SNP was normalized and compared with
a diploid reference set using the dChipSNP software (25).
Analysis of these samples identified recurrent regions of copy
number gain and loss throughout the genome. The frequency
of copy number alteration varied by location and by histotype
(Fig. 3). For example, the PPTP osteosarcoma samples
displayed recurrent copy number changes across almost the
entire genome, whereas the leukemia and rhabdoid samples
displayed the lowest frequency of copy number changes.

Table 1. Genes differentially expressed in clinical
samples versus PPTP models

Tissue location Gene Tumor vs model
(average fold change)

Macrophage CD14 73.6
CD163 58.9
CCR1 9.6
CCR5 9.3
CCL3 8.6
CCL8 8.1

B cells IgK 29.3
Vascular/endothelial C1QA 39.8

C5AR1 39.8
EGFR 22.8
ESAM 3.3
FGFR1 9.5
FLT1 2.6
PDGFB 8.8
PECAM1 4.6
SELPLG 15.9
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Using the copy number estimates from dChipSNP, we
summarized recurrent genetic lesions across the PPTP panel
(excluding osteosarcomas). Our criteria for ‘‘recurrent lesion’’
were a frequency of z50% with DNA copy change (3 V DNA
copy V 1) within at least one of the xenograft histotypes
(Table 2; also Supplementary Table S5). Some of the genomic
regions identified are consistent with previous reports. For
example, deletion of 1p36 and amplification of 2p24 (MYCN)
was common in neuroblastoma xenografts. This 2p24 region
was also amplified in 7 of 12 rhabdomyosarcomas. Other gains
and deletions were consistent with reports of clinical tumors of
the appropriate histotype. For example, 3 of 4 ependymomas
had gains at 1q21.3-q44 (29) and 7 of 9 Ewing’s sarcoma
samples had gains at 8q24.11-q24.21 (30). Deletions of 9p21,
a region include the cyclin-dependent kinase inhibitors
CDKN2A and CDKN2B, were frequent in Ewing’s sarcoma
(5 of 9), glioblastoma (5 of 7), and leukemia samples (11 of
16; Table 2; Supplementary Table S5).

Correlation of expression variation with genomic copy change in
the PPTP panel. We used the combined copy number and
expression data to identify genes whose expression might
be altered by local genetic change during tumorigenesis. To
perform this analysis, we identified SNP proximal to expression
probe sets and tested whether DNA copy change was positively
correlated with differential expression of nearby transcripts. We
postulated the genes identified would be likely candidates as
tumor suppressors or proto-oncogenes.

Of the 38,716 HG-U133Plus2 probe sets tested, 651 within
the top-ranked 2% showed substantial correlation (R z 0.6,
raw P < 5.13 � 10-10, Bonferroni-adjusted P < 0.00002)
between DNA copy and gene expression (Fig. 4A). These 651
probe sets corresponded to 493 unique transcripts (Supple-
mentary Table S6). The distribution of these transcripts across
the genome did not correlate with chromosome length or
with the number of genes per chromosome. After adjustment
for chromosome length and the number of genes per

Fig. 3. Global assessment of DNA copy number change by SNParray.Yaxis, fractionof sampleswithin each tumor histotypewith copy number amplification (red) or deletion
(blue). SNP markers are ordered across the X axis according to their mapped positions from chromosome1to 22.Vertical solid lines and dashed lines (gray), chromosome
boundaries and centromeres, respectively.Tumor histotypes are displayed to the right of the plots. Ep, ependymoma; Ew, Ewing’s sarcoma; Gb, glioblastoma; Le, leukemia;
Ly, lymphoma;Mb, medulloblastoma; Nb, neuroblastoma; Os, osteosarcoma; Rbd, rhabdoid tumor; Rh, rhabdomyosarcoma;Wt,Wilms’ tumor.

Molecular Characterization of Childhood CancerModel

www.aacrjournals.org Clin Cancer Res 2008;14(14) July15, 20084577



chromosome, three chromosome groupings were observed. The
highest frequency of expression changes were observed on
chromosomes 8, 17, and 22 (Fig. 4B). This nonrandom
distribution of ‘‘hits’’ across the genome suggests selective
disruption of genes within these regions during tumorigenesis.
In addition to the unequal distribution of hits across the
genome, there was also an unequal frequency of hits within
each tumor histotype (Fig. 4C). For example, alterations on
chromosome 12 were highest among Wilms’ tumors, whereas
the alterations on chromosome 8 were highest in Ewing’s
sarcoma. These observations are consistent with the patterns of
global DNA copy change observed within each histotype (Fig.
3). Thus, the pattern of genetic alteration in the PPTP samples is
not random; genes are disrupted in a histotype-specific manner,
consistent with those known among their primary tumor
counterparts. Eighty-five of the 493 unique transcripts mapped
to 1 of the 26 areas of recurrent lesions listed in Table 2. The
mapping of the transcripts correlated with copy number to the
regions of recurrent gain or loss is provided in Supplementary
Table S6. Approximately one-third of the 85 genes have
functions related to cell proliferation, DNA repair, or cell death.

We explored the profiles of the copy-disrupted genes among
the PPTP and primary tumor samples. Hierarchical clustering of
the PPTP samples (including osteosarcoma) using the 651 HG-
U133Plus2 probe sets showed strong correlation of expression
that was related to tumor histotype (Fig. 5). Although some
discrepancies were observed [e.g., the rhabdomyosarcomas split
into two groups defined by p53 status (20), and two Ewing’s
sarcomas, two glioblastomas, and one medulloblastoma did
not cluster with their other members], the majority of PPTP
samples clustered according to histotype.

Discussion

We reported previously the similarity in expression profiles
for selected childhood tumor models and their clinical
counterparts as defined by cDNA profiling. The current study
advances the previous analysis in several ways. We used an
expanded gene probe set, and the results from the models were
contrasted to a completely different set of human biopsies than
those used in the previous work. It excluded several tumors of
murine origin that were ‘‘accepted’’ by cDNA profiling and
identified several osteosarcoma cell lines that had expression
profiles that were distinct from clinical osteosarcoma and from
osteosarcoma xenografts. Further, as comparing results using
these two platforms is very complex, the current data set
presents results that can readily be compared with other data
sets obtained using the Affymetrix technology, which includes
the majority of clinical results published for childhood cancer.

Hierarchical clustering of cell lines and xenograft samples
separated the PPTP panel into discrete clusters whose members
were almost exclusively based on histotype, with only three
exceptions. Similarly, expression profiling showed that seven of
the eight histotypes with matching clinical tumor-xenograft
pairs cosegregated in the same cluster, with the rhabdomyo-
sarcomas being the single outlier. However, if either leukemia
samples or genes associated with immunosurveillance were
removed and then profiles were reclustered with variable genes,
then all (with three exceptions) histotype samples cosegregated
(Fig. 2D).

Although the models generally segregated with their clinical
histologies, there are significant differences in expression
profiles of xenografts and their respective clinical tumors. For

Table 2. Recurrent gene lesions

Cytoband Start (Mb) End (Mb) Size (Mb) Ependymoma
(n = 4)

Ewing’s sarcoma
(n = 9)

Glioblastoma
(n = 7)

Leukemia
(n = 16)

Amplifications
1q21.3-q44 150.034 245.12 95.086 3 1 1 0
2p25.1 10.062 11.645 1.583 1 0 0 2
2p24.3 15.72 16.465 0.745 1 0 0 0
2p24.2-p16.1 16.873 60.356 43.483 0 0 0 0
2p14 64.333 65.547 1.214 0 1 1 2
3q27.2-q27.3 18.696 18.818 0.122 0 1 1 1
7p21.1-p11.2 13.986 54.398 40.412 1 2 4 1
7q31.31-q35 117.011 147.281 30.27 1 1 4 2
8q11.21-q22.3 48.151 106.195 58.044 0 6 3 2
8q24.11-q24.21 117.746 128.809 11.063 1 7 3 4
9p22.3-p22.2 14.438 17.312 2.874 0 0 4 0
12p13.33-p12.1 10.76 26.234 15.474 0 1 2 0
12q14.1-q15 56.263 69.037 12.774 0 2 1 0
13q14.11 39.703 40.042 0.339 0 0 2 0
14q11.2 21.703 22.061 0.358 1 2 3 3
15q22.31-q23 64.63 66.673 2.043 0 0 4 1
17q21.31-q25.3 41.159 78.182 37.023 0 6 4 3
20p12.2-p12.1 9.002 17.491 8.489 0 0 3 1
20q11.23-q13.33 33.909 62.377 28.468 0 2 1 2
21q22.3 45.112 46.015 0.903 0 2 0 3
22q11.21 17.722 17.723 0.001 0 2 5 2
Deletions
1p36.32-p36.11 3.118 5.001 1.883 0 2 0 0
6q22.31-q22.33 121.263 130.387 9.124 1 0 0 0
9p21.3 21.675 22.538 0.863 1 5 5 11
14q11.2 21.942 22.033 0.091 0 0 0 8
16q22.3 72.413 73.507 1.094 2 5 2 1
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example, many cell cycle genes including the cyclins CCNA2
and CCNE2, the cyclin-dependent kinases CDK3 and CDK4,
and the mitotic checkpoint genes BUB3 and CHEK1 were
expressed 3- to 5-fold lower in primary samples compared with
xenograft samples. Further, BCL2 was expressed f5-fold higher
in primary samples compared with tumor models, which could
be related to either infiltrating stromal and immune cells in
primary samples or differences in Bcl-2 gene expression in
tumor cells from clinical samples. Many expression differences
between clinical samples and the preclinical models appear to
arise from nontumor cells present in the former but absent in
xenograft models. The differential expression of immune-
related genes provides support for this notion. For example,
many macrophage-associated markers as well as those of B cells
had 8- to 73-fold higher expression levels in primary tumors
(Table 1). Further, many endothelial and vascular gene profiles
(Table 2) were expressed at 10- to 30-fold greater levels in
primary tumors than in xenografts. As anticipated, expression
of all HLA genes was decreased in xenografts compared with
tumor biopsies (3- to 125-fold; data not shown). Thus, the
most significant differences in expression between primary
tumors and PPTP models are associated with immune and
endothelial cell functions.

Studies of childhood cancer using cytogenetic analysis or
more contemporary molecular approaches such as comparative
genomic hybridization or fluorescence in situ hybridization
have revealed gains and losses of DNA that appear characteristic
for a particular histotype. However, similar analyses for models
derived from childhood cancers have not been extensively
reported. SNP analysis revealed specific changes in copy
number in PPTP models that are consistent with gains and

losses of DNA in clinical tumor samples. For example, 1q gain,
6q loss, and loss of chromosome 22 are common aberrations in
ependymoma (31), and these alterations are recapitulated in
the xenografts (n = 4) within the PPTP panel. Common
abnormalities in clinical samples for high-risk neuroblastoma
include gains of 17q and 1q as well as 1p loss and 11q loss, and
the SNP analysis of neuroblastoma xenografts (n = 14)
recapitulate these clinical findings (32–37). Interestingly,
rhabdoid tumor xenografts (n = 6) showed the fewest changes
in copy number. The most frequent change found in 2 of 6
models was in chromosome 22q where loss of copy number
was detected, consistent with clinical reports (38, 39). Each of
the Ewing’s sarcoma xenografts (n = 9) shows the t(11:22)
translocation resulting in expression of EWS/FLI1 or EWS/ERG
transcripts (27), and SNP analysis additionally revealed
increased copy number at 8q and 17q and loss of copy number
on 16q. Chromosome gains of 1q, 8, and 12 have been
reported for clinical specimens of Ewing’s sarcoma (40), and
gains of chromosome 17 have been detected by comparative
genomic hybridization (30). The gains and losses of DNA for
the Wilms’ xenograft samples (n = 4; 1q, 2q, 12, and 20 gains
and 4q, 16q, and 18q losses) are highly consistent with array
comparative genomic hybridization analysis of favorable
histology Wilms’ tumors (41). Of note, gain of 1q has been
correlated with poor outcome in children with Wilms’ tumor as
have loss of heterozygosity at 1p and 16q (42, 43). The SNP
analysis for glioblastoma models (n = 7) is also consistent with
genomic profiling of clinical samples with increases of
chromosome 7 and loss of genetic material on 4q and 13q
(44). One difference is the gain of genetic material at 8q in the
models, whereas losses at both 8p and 8q were more frequent

Table 2. Recurrent gene lesions (Cont’d)

Lymphoma
(n = 3)

Medulloblastoma
(n = 4)

Neuroblastoma
(n = 14)

Osteosarcoma
(n = 7)

Rhabdoid
(n = 6)

Rhabdomyosarcoma
(n = 12)

Wilms’ tumor
(n = 4)

Total
(n = 86)

1 0 10 3 2 6 3 30
1 0 8 1 0 7 1 21
0 0 13 1 0 7 1 23
0 0 6 2 0 7 1 16
3 0 2 1 0 5 1 16
3 0 2 0 0 1 1 10
2 1 8 5 0 4 1 29
1 1 4 2 0 2 3 21
1 1 1 3 0 1 1 19
0 1 2 3 0 3 0 24
0 1 2 1 0 2 1 11
0 0 6 3 0 4 3 19
0 0 4 1 0 5 3 16
0 0 0 0 0 6 2 10
1 2 3 6 1 3 3 28
0 0 0 2 0 1 0 8
2 0 13 3 1 3 1 36
0 1 0 2 0 2 3 12
1 1 2 4 0 7 3 23
3 0 1 5 0 1 1 16
0 0 2 3 0 1 0 15

0 0 11 0 0 1 1 15
3 0 2 2 0 1 0 9
1 0 1 3 0 2 1 30
2 0 0 0 0 0 0 10
0 0 0 1 0 4 0 15
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Fig. 4. Correlation of DNA copy and expression across the PPTP samples.A, correlation of expression variation and DNA copy variation according to genomic location. SNP
markers are ordered across the X axis , whereas expression probe sets are ordered on theYaxis according to their mapped positions.The heat map displays Pearson’s
coefficient (R) of the association between copy change and relative expression. Results from the 493 unique transcripts with R z 0.6. B, distribution of the 493
copy-disrupted transcripts (R z 0.6) across the genome.Yaxis, frequency of observations after adjustment for chromosome length and number of genes per chromosome.
Chromosomes are labeled by number and colored by their apparent grouping. C, distribution of the 493 copy-disrupted transcripts according to genome location and
frequency of observation in tumor histotypes.The number of transcripts is plotted (Yaxis) against chromosome position (X axis). Colors within the bars indicate the tumor
histotype with the most frequent number of changes at a given chromosome location.
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in clinical samples. The gains and losses of genetic material in
osteosarcoma xenografts were too complex to analyze, consis-
tent with gross chromosomal abnormalities associated with
these tumors (45).

Overall, 26 chromosomal locations (Table 2) were identified
at which at least 50% of samples within a given histotype
showed copy change. Twenty-one of these regions showed
evidence of DNA copy gain, whereas 5 showed copy loss.
Using SNP annotations from the Affymetrix NetAffx Web site,
we identified a total of 1,892 genes adjacent to SNP within
these boundaries. Although several chromosome locations
contained hundreds of genes, almost half the regions
identified contained V10 genes. Gene Ontology and Ingenuity
Pathways analysis showed enrichment of genes involved in
primary metabolism, including RNA and DNA metabolism, as
well as those involved in protein transport, DNA repair, and
cell cycle (Supplementary Table S5). Frequent copy changes
were identified in cell cycle regulators including copy loss of
CDKN2A, CDKN2B, RB1, and FRAP1, whereas copy gain was
observed for MYCN, CDK4, and MAPK1. DNA repair genes
with frequent copy gain included MSH2, NBN, XRCC6,
RAD21, RAD51C, and RAD54L.

Sixteen of the identified regions contain genes with known
alterations in human cancer (Table 3; ref. 46). Overall, f12%
(42 of 363) of the Cancer Census Genes16 (46) are located
within those 16 regions. Deletion of 9p21.3 was observed in
30 of the 86 PPTP models including the majority of the
leukemia, Ewing’s sarcoma, and glioblastoma samples. Six
genes mapped within this region including the tumor
suppressor CDKN2A, which is frequently deleted in T-cell
leukemia and inactivated in many other human cancers via
mutation, deletion, or hypermethylation. Interestingly, 11 of
12 independently derived neuroblastoma (counting in vitro/
in vivo models as only one line) showed copy gain at 2p24.1
where MYCN is located. Only 8 of these 12 models
have known MYCN amplification by fluorescence in situ
hybridization analysis; however, the SNP microarray analysis
suggests that amplification of MYCN in neuroblastoma might
be more prevalent than indicated by previous analyses.
This 2p24 region was also amplified in 7 of 12 rhabdomyo-
sarcomas, consistent with the relatively high incidence of

Fig. 5. Expression profiles of the copy-disrupted transcripts. Hierarchical cluster analysis of PPTP samples using expression profiles of transcripts with copy-disrupted
expression (R z 0.6).Xaxis, samples;Yaxis, gene expressionprofiles; colored circles, histiotypes. Heatmap colors showoverexpressed transcripts (red) andunderexpressed
transcripts (green).The scale bar indicates relative expression as SD from the mean.

16 http://www.sanger.ac.uk/genetics/CGP/Census/

Molecular Characterization of Childhood CancerModel

www.aacrjournals.org Clin Cancer Res 2008;14(14) July15, 20084581



amplification of MYCN, particularly in alveolar rhabdomyo-
sarcoma (47–49).

Approximately one-third of the regions with recurrent copy
change in the PPTP models do not contain genes with known
alterations in human cancer. One example is gain at 22q11.21,
which was observed in 5 of 7 glioblastoma samples and 15 of
86 PPTP models. Another example of tumor-associated copy
change is loss at 16q22.3, which was observed in 5 of 9 Ewing’s
sarcoma and 4 of 12 rhabdomyosarcoma PPTP models. This
deleted region contains four transcripts (C16orf47, FA2H,
GLG1, and PSMD7) that show strong correlation of expression
with copy number. Of the four candidate genes, GLG1 and
PSMD7 have roles in protein metabolism and protein turnover,
respectively. GLG1 also binds basic fibroblast growth factor;
thus, loss of GLG1 in tumor cells may modify the fibroblast
growth factor signaling pathway. Amplification at 21q22.3 in 5
of 7 osteosarcoma models may also influence fibroblast growth
factor signaling. This region contains 7 candidate loci. One
gene is PTTG1IP. The PTTG1IP gene product binds PTTG1, thus
causing its translocation from the cytoplasm to the nucleus
where PTTG1 activates expression of basic fibroblast growth

factor-2. PTTG1 has transforming activity in vitro and tumor-
igenic activity in vivo , and the gene is highly expressed in
various tumors (reviewed by ref. 50).

In tumor samples representing 11 different histotypes, we
identified 493 transcripts whose differential expression was
highly correlated with DNA copy change, of which only 5 are
common to the profiles selected in Fig. 1. Our results show that
these genes whose expression is altered by proximal DNA copy
number changes have a strong histotype pattern within the
PPTP. Thus, two observations can be made. First, most of the
histotype-specific DNA lesions identified also contain genes
whose expression correlates with genomic copy number
change. Second, these findings point to a subset of genes
whose altered expression is likely important to tumorigenesis
within a given histotype and thereby potentially important
targets for small-molecule therapeutics. However, confirmation
of these results will require analysis of extended cohorts of
models within a histotype.

The molecularly characterized PPTP panel offers a unique
resource for relating the effect of novel therapeutic interven-
tions to the underlying biological factors in tumors that
determine response. The gene expression data set may provide
information relevant to the primary cellular targets of novel
agents, and it also may allow identification of roles for
previously unsuspected genes in affecting response to treat-
ment. The gene copy number data for the PPTP panel are likely
to be increasingly relevant to therapeutics development as
evidenced by the identification of genomic abnormalities
associated with the response of adult cancers to molecularly
targeted agents (e.g., epidermal growth factor receptor mutation
for erlotinib, HER-2 amplification for trastuzumab, and Bcl-2
amplification for ABT-263). The comprehensive genomic
analysis described in this report and to be deposited in a
public database17 will serve as a reference point for researchers
interested in the treatment of childhood cancers. These analyses
enhance the value of the PPTP preclinical models as a unique
resource that encompasses a substantial proportion of the
genomic diversity of childhood cancers.
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Table 3. Regions identified that contain genes
with known alterations in human cancer

Region Genes

Amplifications
1q21-q44 ABL2, FCGR2B, FH, HRPT2,

IRTA1, PBX1, SDHC, TPR
2p24 MYCN
2p24-p16 ALK, BCL11A, MSH2, MSH6
3q27-q27 EIF4A2
7p21-p11 HOXA13, JAZF1, ZNFN1A1
7q31-q35 BRAF, TIF1
8q11-q22 NBS1, NCOA2, PLAG1
8q24-q24 EXT1
12p13-p12 HIST1H4I, CCND2, ETV6, KRAS
12q14-q15 HMGA2
13q14 FOXO1A
14q11 TCR-a
17q21-q25 BRIP1, CLTC, COL1A1, HLF,

MSI2, PRKAR1A
20q11-q13 GNAS
Deletions
1p36-p36 PAX7, PRDM16
9p21 CDKN2A/2B
14q11 TCR-a
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